Journal of Signal Processing
Online ISSN : 1880-1013
Print ISSN : 1342-6230
ISSN-L : 1342-6230
階層型ニューラルネットワークの学習に対するonline/batchハイブリッド型準ニュートン法の有効性に関する研究
阿部 俊和坂下 善彦二宮 洋
著者情報
ジャーナル フリー

2012 年 16 巻 5 号 p. 451-458

詳細
抄録
Various techniques based on the gradient descent method have been studied as training algorithms for neural networks. Neural network training poses data-driven optimization problems in which the objective function involves the summation of loss terms over a set of data to be modeled. For a given training data set, the gradient-based algorithm operates in one of two modes: online (stochastic) or batch. In this paper, a robust training algorithm is proposed, combining "online" mode with "batch" one. The validity of the proposed algorithm is demonstrated through computer simulations compared with the previous quasi-Newton based training methods.
著者関連情報
© 2012 信号処理学会
前の記事 次の記事
feedback
Top