Journal of Signal Processing
Online ISSN : 1880-1013
Print ISSN : 1342-6230
ISSN-L : 1342-6230
Maximum-Flow Neural Network を用いた有向/ 無向グラフに対する最小s-t カットアルゴリズムの一検討
佐藤 雅俊青森 久田中 衞
著者情報
ジャーナル フリー

2014 年 18 巻 5 号 p. 259-265

詳細
抄録
The maximum-flow neural network(MF-NN) is a novel neural network model for the maximum flow problem. From the max-flow min-cut theorem, it is known that the maximum flow problem and the minimum cut problem are dual problems. This indicates that MF-NN is applicable to the minimum cut algorithm. In this paper, we propose a novel minimum cut solution using MF-NN in directed and undirected graphs. Furthermore, since the proposed method is intended to circuit implementation based on nonlinear circuit theory, it has considerable potential for speeding up computation time.
著者関連情報
© 2014 信号処理学会
前の記事 次の記事
feedback
Top