Journal of Signal Processing
Online ISSN : 1880-1013
Print ISSN : 1342-6230
ISSN-L : 1342-6230
Regularizing Oversmoothing of Temporal Convolutional Networks for Action Segmentation into Human Assembly Operations
Keisuke NakamuraYoshitaka YamamotoMasafumi NishimuraYuki ShionoReiki ShirasawaTakayuki NakanoTakahiro Aoki
著者情報
ジャーナル フリー

2023 年 27 巻 4 号 p. 75-79

詳細
抄録

We investigated a (supervised) deep learning model for the automatic segmentation of manufacturing video data into a sequence of assembly operations. In the action segmentation for general human behavior, various temporal convolutional network (TCN)-based methods have been proposed and demonstrated to have stable performance using temporal features from captured extensive fields of image frames. However, they often make it difficult to detect unusual actions occurring in short durations, such as skipping assembly operations. In this paper, we address this drawback in the existing TCN model by introducing two techniques of differentiable group normalization and jumping knowledge to relax the oversmoothing effect. Then, we empirically show the performance of the proposed TCN variations using a benchmark for operational assembly work segmentation. We also present a preliminary result on irregular work detection.

著者関連情報
© 2023 Research Institute of Signal Processing, Japan
前の記事 次の記事
feedback
Top