Journal of Signal Processing
Online ISSN : 1880-1013
Print ISSN : 1342-6230
ISSN-L : 1342-6230
Amplitude Spectrogram Prediction from Mel-Frequency Cepstrum Coefficients Using Deep Neural Networks
Shoya KawaguchiDaichi Kitamura
著者情報
ジャーナル フリー

2023 年 27 巻 6 号 p. 207-211

詳細
抄録

Timbre conversion of musical instrument sounds, utilizing deep neural networks (DNNs), has been extensively researched and continues to generate significant interest in the development of more advanced techniques. We propose a novel algorithm for timbre conversion that utilizes a variational autoencoder. However, this system must be capable of predicting the amplitude spectrogram from the melfrequency cepstrum coefficient (MFCC). This research aims to build a DNN-based decoder that utilizes the MFCC and time-frame-wise total amplitude as inputs to predict the amplitude spectrogram. Experiments conducted using a musical instrument sound dataset show that a decoder incorporating bidirectional long short-term memory yields accurate predictions of amplitude spectrograms.

著者関連情報
© 2023 Research Institute of Signal Processing, Japan
前の記事 次の記事
feedback
Top