プラズマ・核融合学会誌
Print ISSN : 0918-7928
研究論文
Forthcoming Break-Even Conditions of Tokamak Plasma Performance for Fusion Energy Development
Ryoji HIWATARIKunihiko OKANOYoshiyuki ASAOKAKoji TOKIMATSUSatoshi KONISHIYuichi OGAWA
著者情報
ジャーナル フリー

2005 年 81 巻 11 号 p. 903-916

詳細
抄録

The present study reveals forthcoming break-even conditions of tokamak plasma performance for the fusion energy development. The first condition is the electric break-even condition, which means that the gross electric power generation is equal to the circulating power in a power plant. This is required for fusion energy to be recognized as a suitable candidate for an alternative energy source. As for the plasma performance (normalized beta value ΒN), confinement improvement factor for H-mode HH, the ratio of plasma density to Greenwald density fnGW), the electric break-even condition requires the simultaneous achievement of 1.2 < ΒN < 2.7, 0.8 < HH, and 0.3 < fnGW < 1.1 under the conditions of a maximum magnetic field on the TF coil Btmax = 16 T, thermal efficiency ηe = 30 %, and current drive power PNBI < 200 MW. It should be noted that the relatively moderate conditions of ΒN ˜ 1.8, HH ˜ 1.0, and fnGW ˜ 0.9, which correspond to the ITER reference operation parameters, have a strong potential to achieve the electric break-even condition. The second condition is the economic break-even condition, which is required for fusion energy to be selected as an alternative energy source in the energy market. By using a long-term world energy scenario, a break-even price for introduction of fusion energy in the year 2050 is estimated to lie between 65 mill/kWh and 135 mill/kWh under the constraint of 550 ppm CO2 concentration in the atmosphere. In the present study, this break-even price is applied to the economic break-even condition. However, because this break-even price is based on the present energy scenario including uncertainties, the economic break-even condition discussed here should not be considered the sufficient condition, but a necessary condition. Under the conditions of Btmax = 16 T, ηe = 40 %, plant availability 60 %, and a radial build with/without CS coil, the economic break-even condition requires ΒN ˜ 5.0 for 65 mill/kWh of lower break-even price case. Finally, the present study reveals that the demonstration of steady-state operation with ΒN ˜ 3.0 in the ITER project leads to the upper region of the break-even price in the present world energy scenario, which implies that it is necessary to improve the plasma performance beyond that of the ITER advanced plasma operation.

著者関連情報
© 2005 by The Japan Society of Plasma Science and Nuclear Fusion Research
前の記事 次の記事
feedback
Top