Abstract
Proteomics is one of the best available tools for studying posttranslational modifications (PTMs), and it has no limitation like those encountered with forward genetics. Therefore, it is well suited for the analysis of unknown signaling pathways. Among the several PTMs described thus far, phosphorylation is the most extensively studied, and they have been shown to play a role in plant immune signaling. We have developed a phosphoproteomics platform, which enables monitoring phosphorylation events in plant cells at the cellular level.
To reveal novel players involved in plant immunity, we are analyzing phosphoproteome dynamics upon MAMP (microbe-associated molecular pattern) treatments. Furthermore, we are developing a novel method, which utilizes the phosphoproteomics technique, to identify substrates of protein kinases involved in plant immunity.