写真測量とリモートセンシング
Online ISSN : 1883-9061
Print ISSN : 0285-5844
ISSN-L : 0285-5844
回転不変モーメントを入力とするニューラルネットを用いた画像重ね合わせ用対応点候補の自動選定
奥村 浩渡邉 勝之末崎 将司梶原 康司張 煕吉川 敏則
著者情報
ジャーナル フリー

2003 年 42 巻 3 号 p. 17-28

詳細
抄録
Accuracy of image registration is severely affected by that of corresponding control point (CCP) selection in remote sensing or GIS (Geographic Information System) . In this paper, a new automated system for CCP candidate selection from target images is proposed. In the system, first, grayscale image within a quasicircular field of view (FOV) is transformed into binary one after intensity modification for the several extreme intensity pixels. Next, the binary image is transformed into a rotation invariant intermediate representation. Finally, the system determines whether the central pixel of the FOV is appropriate as the CCP by using well-trained 3-layer feedforward artificial neuralnet. Pseudo Zernike moments are employed as the intermediate representation. Consequently, without selection accuracy deterioration, we achieve quite fewer training patterns, shorter training time, and higher noise tolerance in comparison with conventional neuralnet-based systems.
著者関連情報
© 社団法人 日本写真測量学会
前の記事 次の記事
feedback
Top