The Journal of Toxicological Sciences
Online ISSN : 1880-3989
Print ISSN : 0388-1350
ISSN-L : 0388-1350
Original Article
Reduction of fatty liver in rats by nicotinamide via the regeneration of the methionine cycle and the inhibition of aldehyde oxidase
Chie YokouchiYukari NishimuraHirohiko GotoMakoto SatoYuya HidohKenji TakeuchiYuji Ishii
著者情報
ジャーナル フリー HTML

2021 年 46 巻 1 号 p. 31-42

詳細
抄録

Nonalcoholic fatty liver disease, which has been rapidly increasing in the world in recent years, is roughly classified into nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis. This study was based on our previous reports that stated that the combination treatment of N1-methylnicotinamide (MNA) and hydralazine (HYD) improves fatty liver in NAFL model rats. This finding was attributed to the MNA metabolism inhibition by HYD, which is a strong inhibitor of aldehyde oxidase (AO); this results in an increase in hepatic MNA and improved fatty liver. We hypothesized that orally administered nicotinamide (NAM), which is the precursor of MNA and is a form of niacin, would be efficiently metabolized by nicotinamide N-methyltransferase in the presence of exogenous S-adenosylmethionine (SAM) in NAFL rats. To address this issue, NAFL model rats were orally administered with NAM, SAM, and/or HYD. As a result, liver triglyceride (TG) and lipid droplet levels were barely altered by the administration of NAM, SAM, NAM+SAM, or NAM+HYD. By contrast, the triple combination of NAM+SAM+HYD significantly reduced hepatic TG and lipid droplet levels and significantly increased hepatic MNA levels. These findings indicated that the combination of exogenous SAM with AO inhibitors, such as HYD, has beneficial effects for improving fatty liver with NAM.

著者関連情報
© 2021 The Japanese Society of Toxicology
前の記事 次の記事
feedback
Top