The Journal of Toxicological Sciences
Online ISSN : 1880-3989
Print ISSN : 0388-1350
ISSN-L : 0388-1350
Original Article
Benzo(a)pyrene-induced mitochondrial respiration and glycolysis disturbance in human neuroblastoma cells
Yi LyuJin YangLiXia ChengZhaoFei LiJinPing Zheng
著者情報
ジャーナル フリー HTML

2023 年 48 巻 2 号 p. 87-97

詳細
抄録

Mammalian cells generate ATP through mitochondrial respiration and glycolysis. Mitochondria not only play a key role in cell energy metabolism but also in cell cycle regulation. As a neurotoxic pollutant, benzo(a)pyrene (BaP) can trigger neuronal oxidative damage and apoptosis. However, the features of BaP-induced energy metabolism disturbance in SH-SY5Y cells has rarely been addressed. This study aimed to measure oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) as indications of respiratory activities and glycolytic. SH-SY5Y cells were treated with BaP to establish a cytotoxicity model, and butylated hydroxy anisole (BHA) was used to alleviate the damages induced by BaP. Using the Seahorse Extracellular Flux analyzer (XFp), we found that BaP significantly reduced basal respiration, ATP-linked OCR in SH-SY5Y cells with dose- and time-dependent. BHA supplementation recovered the mitochondrial respiration, synchronously attenuated intracellular ROS generation and lipid peroxidation, and simultaneously reversed the abnormal changes in antioxidant biomarkers, then rescued BaP-induced cell apoptosis. But long-term exposure to BaP or exposure to a high dosage of BaP could decrease OCR associated with maximal respiratory, spare capacity, and glycolysis metabolism. At the same time, the damage to cells is also more severe with the rate of apoptosis and mitochondrial membrane potential (ΔΨm) loss rising sharply, which were not entirely reversed by BHA. This study provides energy metabolism-related, indicative biomarkers of cytotoxicity induced by BaP, which might provide information for early prevention and intervention.

著者関連情報
© 2023 The Japanese Society of Toxicology
前の記事 次の記事
feedback
Top