Journal of Thermal Science and Technology
Online ISSN : 1880-5566
ISSN-L : 1880-5566
Papers
Applications of the Simple Multi-Fluid Model to Correlations of the Vapor-Liquid Equilibrium of Refrigerant Mixtures Containing Carbon Dioxide
Ryo AKASAKA
Author information
JOURNAL FREE ACCESS

2009 Volume 4 Issue 1 Pages 159-168

Details
Abstract

This study presents a simple multi-fluid model for Helmholtz energy equations of state. The model contains only three parameters, whereas rigorous multi-fluid models developed for several industrially important mixtures usually have more than 10 parameters and coefficients. Therefore, the model can be applied to mixtures where experimental data is limited. Vapor-liquid equilibrium (VLE) of the following seven mixtures have been successfully correlated with the model: CO2 + difluoromethane (R-32), CO2 + trifluoromethane (R-23), CO2 + fluoromethane (R-41), CO2 + 1,1,1,2- tetrafluoroethane (R-134a), CO2 + pentafluoroethane (R-125), CO2 + 1,1-difluoroethane (R-152a), and CO2 + dimethyl ether (DME). The best currently available equations of state for the pure refrigerants were used for the correlations. For all mixtures, average deviations in calculated bubble-point pressures from experimental values are within 2%. The simple multi-fluid model will be helpful for design and simulations of heat pumps and refrigeration systems using the mixtures as working fluid.

Content from these authors
© 2009 by The Japan Society of Mechanical Engineers and The Heat Transfer Society of Japan
Previous article Next article
feedback
Top