2020 Volume 18 Issue 6 Pages 349-358
A novel fluidization backwash method by the air-water bubbly flow with air bubbles of various sizes has been proposed for rapid filters. The backwash efficiency is closely related to the bubble wake motion. Bubble coalescence, bed contraction and jet generation caused by the motion of air bubble wakes strikingly enhance the discharge of retained sludge. The effect of the bubble wakes on the backwash efficiency is ensured by controlling the fluidizing condition which is easily identified visually. The size of air bubbles should be controlled properly, and the air bubble size at the dense bed surface must be within several centimeters to prevent the loss of filter media particles from filter beds. The backwash efficiency of the filter bed achieved 94% in average by optimizing the air bubble size in the air-water bubbly flow. The air-water bubbly flow backwash method was also applied to a self-backwash filter where the backwash flow rate depends on an elevated water tank, and the backwash efficiency was as high as that for the constant flow rate backwash method.