2021 年 66 巻 2 号 p. 119-129
Recent studies proposed empirical equations describing the relations between amphibole single-phase chemistry and the pressure-temperature-compositional conditions of the coexisting melt. These methods are called amphibole single-phase thermometer, barometer, and melt-chemometer, and have been used in the previous ten years to investigate magma reservoir processes of subduction-related volcanoes. Here, the three methods are briefly introduced with their reliabilities. Then, we review the applications of these methods to clarify magma reservoir processes, chiefly using as examples three volcanoes of Kyushu, i.e. the Tsurumi-dake, Aso and Unzen volcanoes. The pressure-temperature-SiO2 content conditions of the melts estimated from amphiboles enable us to determine physicochemical conditions of the end-member melts of magma mixing, even for cases in which the mixed melt is perfectly homogenized and/or the end-member melt is chemically similar to the mixed melt. We could further identify a phenocryst mineral-melt disequilibrium in a magma, which is usually difficult to recognize from petrography and is a potential factor of misinterpretation for magma reservoir processes, based on the results. Furthermore, the estimated pressures constrain the depth conditions of magma plumbing systems, which can be cross-checked by the results of geophysical observations. These results demonstrate the usefulness of the methods for investigating magma reservoir processes.