火山
Online ISSN : 2189-7182
Print ISSN : 0453-4360
ISSN-L : 0453-4360
論説
雌阿寒岳火山ポンマチネシリにおける過去1000年間の火山活動史
南 裕介中川 光弘佐藤 鋭一和田 恵治石塚 吉浩
著者情報
ジャーナル フリー

2021 年 66 巻 3 号 p. 211-227

詳細
抄録

Meakandake Volcano is a post-caldera active stratovolcano located on the south-eastern rim of Akan Caldera, eastern Hokkaido, Japan. Recent eruptive activity has occurred in 1955-1960, 1988, 1996, 1998, 2006, and 2008 at Ponmachineshiri, which is one of several volcanic bodies that form the stratovolcano. These events indicate that Ponmachineshiri has a high potential for future eruptions. In order to better understand the hazards posed by Meakandake Volcano, this study focused on the modern eruptive activity of Ponmachineshiri during the last 1,000 years. The authors conducted field observations at outcrops in the summit area, excavation surveys on the volcanic flanks, component analysis for pyroclastic deposits, and radiocarbon dating for intercalated soil layers. As a result, at least four layers of pyroclastic fall deposits derived from Ponmachineshiri during the last 1,000 years were recognized, ranging from Volcanic Explosivity Index (VEI) levels of 1 to 2. In chronological order, the major pyroclastic fall deposits consist of Pon-1 (10th to 12th century; VEI 2), Pon-2 (13th to 14th century; VEI 2), Pon-3 (15th to 17th century; VEI 1), and Pon-4 (after AD 1739; VEI 1), with small-scale (VEI<1) phreatic and phreatomagmatic eruption deposits intercalated within Pon-1, Pon-2, and Pon-3 pyroclastic fall deposits. The presence of scoria and minor pumice in the Pon-1, Pon-2, and Pon-3 pyroclastic fall deposits suggests that these eruptions were phreatomagmatic events. On the other hand, the absence of juvenile materials in the Pon-4 pyroclastic fall deposits suggests that the activity was a phreatic eruption. The decreasing proportion of juvenile materials in eruptive deposits over the last 1,000 years is consistent with a reduced magma contribution and indicates that the development of the hydrothermal system is likely to play an important role in future eruption scenarios for Meakandake Volcano.

著者関連情報
© 2021 特定非営利活動法人日本火山学会
前の記事 次の記事
feedback
Top