Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
On the Ishida and Du Bois complexes
Marianna Fornasiero
著者情報
ジャーナル フリー

2006 年 29 巻 3 号 p. 462-474

詳細
抄録
In [12] Ishida introduces a complex, denoted by $¥tilde {¥Omega}^{^.}_Y$, associated to a filtered semi-toroidal variety Y over Spec C and proves that it is quasi-isomorphic to the Du Bois complex $¥underline{¥underline{¥Omega}}^{^.}_Y$ ([5]). In this article we regard a filtered semi-toroidal variety Y as an ideally log smooth log scheme over Spec C, and we give an interpretation of the Ishida complex $¥tilde{¥Omega}^{^.}_Y$ in terms of logarithmic geometry. Therefore, given a log smooth log scheme X over Spec C, we use this logarithmic interpretation of the Ishida complex to construct the following distinguished triangle in the Du Bois derived category Ddiff (X): IMω.X → $¥tilde{¥Omega}^{^.}_X$ → $¥tilde{¥Omega}^{^.}_D$ → ·, where D = XXtriv (Xtriv being the trivial locus for the log structure M on X). Since the complex IMω.X calculates the De Rham cohomology with compact supports of the smooth analytic space $X_{triv}^{an}$ ([20, Corollary 1.6]), this triangle is useful to give an interpretation of H.DR,c(Xtriv/C) as the hyper-cohomology of the simple complex $¥underline{¥underline{s}}[¥underline{¥underline{¥Omega}}^{^.}_X ¥longrightarrow ¥underline{¥underline{¥Omega}}^{^.}_D]$.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2006 Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top