Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Remarks on complete non-compact gradient Ricci expanding solitons
Li MaDezhong Chen
著者情報
キーワード: Ricci flow, expanding soliton
ジャーナル フリー

2010 年 33 巻 2 号 p. 173-181

詳細
抄録
In this paper, we study gradient Ricci expanding solitons (X,g) satisfying
Rc = cg + D2f,
where Rc is the Ricci curvature, c < 0 is a constant, and D2f is the Hessian of the potential function f on X. We show that for a gradient expanding soliton (X,g) with non-negative Ricci curvature, the scalar curvature R has at most one maximum point on X, which is the only minimum point of the potential function f. Furthermore, R > 0 on X unless (X,g) is Ricci flat. We also show that there is exponentially decay for scalar curvature on a complete non-compact expanding soliton with its Ricci curvature being ε-pinched.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2010 Department of Mathematics, Tokyo Institute of Technology
次の記事
feedback
Top