抄録
We consider a metric dL on the Teichmüller space T(R0) defined by the length spectrum of Riemann surfaces. H. Shiga proved that dL defines the same topology as that of the Teichmüller metric dT on T(R0) if a Riemann surface R0 can be decomposed into pairs of pants such that the lengths of all their boundary components except punctures are uniformly bounded from above and below.
In this paper, we show that there exists a Riemann surface R0 of infinite type such that R0 cannot be decomposed into such pairs of pants, whereas the two metrics define the same topology on T(R0). We also give a sufficient condition for these metrics to have different topologies on T(R0), which is a generalization of a result given by Liu-Sun-Wei.