抄録
Following the idea of P. Schmutz Schaller, we shall consider a parametrization of the Teichmüller space $\mathcal{T}$2 of compact Riemann surfaces of genus two. In the first part of this paper, we calculate the coordinates of 4 kinds of surface uniformized by Fuchsian groups whose fundamental regions can be the regular octagon. In the second part, we give a characterization of $\mathcal{T}$2 in R7.