抄録
Real hypersurfaces M2n−1 of type (B) in CHn(c), n ≥ 2 are known as interesting examples of Hopf hypersurfaces with constant principal curvatures. They are homogeneous in this ambient space. Moreover, the numbers of distinct principal curvatures of all real hypersurfaces of type (B) with radius r ≠ (1/$\sqrt{|c|}$) loge(2 + $\sqrt{3}$) are 3. When r = (1/$\sqrt{|c|}$) loge(2 + $\sqrt{3}$), the real hypersurface of type (B) has two distinct principal curvatures. The purpose of this paper is to characterize this Hopf hypersurface having two distinct constant principal curvatures.