Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
The real hypersurface of type (B) with two distinct principal curvatures in a complex hyperbolic space
Katsufumi YamashitaSadahiro Maeda
著者情報
ジャーナル フリー

2014 年 37 巻 1 号 p. 24-33

詳細
抄録
Real hypersurfaces M2n−1 of type (B) in CHn(c), n ≥ 2 are known as interesting examples of Hopf hypersurfaces with constant principal curvatures. They are homogeneous in this ambient space. Moreover, the numbers of distinct principal curvatures of all real hypersurfaces of type (B) with radius r ≠ (1/$\sqrt{|c|}$) loge(2 + $\sqrt{3}$) are 3. When r = (1/$\sqrt{|c|}$) loge(2 + $\sqrt{3}$), the real hypersurface of type (B) has two distinct principal curvatures. The purpose of this paper is to characterize this Hopf hypersurface having two distinct constant principal curvatures.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2014 Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top