Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
The best constant of three kinds of the discrete Sobolev inequalities on the complete graph
Hiroyuki YamagishiKohtaro WatanabeYoshinori Kametaka
著者情報
ジャーナル フリー

2014 年 37 巻 2 号 p. 383-395

詳細
抄録
We introduce a discrete Laplacian A on the complete graph with N vertices, that is, KN. We obtain the best constants of three kinds of discrete Sobolev inequalities on KN. The background of the first inequality is the discrete heat operator (d/dt + A + a0I) ··· (d/dt + A + aM−1I) with positive distinct characteristic roots a0, ..., aM−1. The second one is the difference operator (A + a0I) ··· (A + aM−1I) and the third one is the discrete polyharmonic operator AM. Here A is an N × N real symmetric positive-semidefinite matrix whose eigenvector corresponding to zero eigenvalue is 1 = t(1, 1, ..., 1). A discrete heat kernel, a Green's matrix and a pseudo Green's matrix are obtained by means of A.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2014 Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top