Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
On θ-congruent numbers on real quadratic number fields
Ali S. JanfadaSajad Salami
著者情報
ジャーナル フリー

2015 年 38 巻 2 号 p. 352-364

詳細
抄録
Let K = Q ($\sqrt{m}$) be a real quadratic number field, where m > 1 is a squarefree integer. Suppose that 0 < θ < π has rational cosine, say cos(θ) = s/r with 0 < |s| < r and gcd(r,s) = 1. A positive integer n is called a (K,θ)-congruent number if there is a triangle, called the (K,θ, n)-triangles, with sides in K having θ as an angle and nαθ as area, where αθ = $\sqrt{r^2-s^2}$. Consider the (K,θ)-congruent number elliptic curve En: y2 = x(x + (r + s)n) (x − (rs)n) defined over K. Denote the squarefree part of positive integer t by sqf(t). In this work, it is proved that if m ≠ sqf(2r(rs)) and mn ≠ 2, 3, 6, then n is a (K,θ)-congruent number if and only if the Mordell-Weil group En(K) has positive rank, and all of the (K, θ, n)-triangles are classified in four types.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2015 Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top