Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Well-posedness and decay property for the generalized damped Boussinesq equation with double rotational inertia
Zaiyun ZhangJianhua HuangMingbao Sun
著者情報
ジャーナル フリー

2016 年 39 巻 3 号 p. 535-551

詳細
抄録
In this paper, we investigate the initial value problem (IVP henceforth) associated with the generalized damped Boussinesq equation with double rotational inertia
$$\left\{\begin{array}{ll} u_{tt}+\gamma\Delta^2 u_{tt}-a\Delta u_{tt}-2b\Delta u_t-\alpha\Delta^3u+\beta\Delta^2 u-\Delta u=\Delta f(u),\quad x \in\mathbb{R}^n, \; t> 0, \\ u(x,0)=u_0(x),\quad u_t(x,0)=u_1(x),\quad x \in\mathbb{R}^n. \end{array}\right.$$
Based on decay estimates of solutions to the corresponding linear equation, we establish the decay estimates and the pointwise estimates by using Fourier transform. Under small condition on the initial data, we obtain the existence and asymptotic behavior of global solutions in the corresponding Sobolev spaces by time weighted norms technique and the contraction mapping principle.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2016 Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top