Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Resolutions of Newton non-degenerate mixed polynomials of strongly polar non-negative mixed weighted homogeneous face type
Sachiko SaitoKosei Takashimizu
著者情報
ジャーナル 認証あり

2021 年 44 巻 3 号 p. 457-491

詳細
抄録

Let f (z, z) be a convenient Newton non-degenerate mixed polynomial with strongly polar non-negative mixed weighted homogeneous face functions. We consider a convenient regular simplicial cone subdivision Σ* which is admissible for f and take the toric modification associated with Σ*. We show that the toric modification resolves topologically the singularity of the mixed hypersurface germ defined by f (z, z) under the Assumption(*) (Theorem 32). This result is an extension of the first part of Theorem 11 ([4]) by M. Oka, which studies strongly polar positive cases, to strongly polar non-negative cases. We also consider some typical examples (§9).

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2021 Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top