KODAI MATHEMATICAL SEMINAR REPORTS
Online ISSN : 1881-5480
Print ISSN : 0023-2599
ISSN-L : 0023-2599
The Carathéodory metric in plane domains
Jacob Burbea
著者情報
ジャーナル フリー

1977 年 29 巻 1-2 号 p. 157-166

詳細
抄録
Let DOAB be a plane domain and let CD(z) be its analytic capacity at zD. Let \mathscr{K}D(z) be the curvature of the Carathéodory metric CD(z)|dz|. We show that \mathscr{K}D(z)<−4 the Ahlfors function of D with respect to z has a zero other than z. For finite D, \mathscr{K}D(z){≤}−4 and equality holds if and only if D is simply connected. As a corollary we obtain a result proved first by Suita, namely, that \mathscr{K}D(z){≤}−4 if DOAB. Several other properties related to the Carathéodory metric are proven.
著者関連情報

この記事は最新の被引用情報を取得できません。

© Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top