Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Strong convergence of approximating fixed points for nonexpansive nonself-mappings in Banach spaces
Jong Soo JungTae Hwa Kim
著者情報
ジャーナル フリー

1998 年 21 巻 3 号 p. 259-272

詳細
抄録
Let E be a reflexive Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and T CE a nonexpansive mapping satisfying the inwardness condition. Assume that every weakly compact convex subset of E has the fixed point property. For uC and t∈(0, 1), let xt be a unique fixed point of a contraction Gt CE, defined by Gtx=tTx+(1−t)u, xC. It is proved that if {xt} is bounded, then the strong limt→1xt exists and belongs to the fixed point set of T Furthermore, the strong convergence of other two schemes involving the sunny nonexpansive retraction is also given in a reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm.
著者関連情報

この記事は最新の被引用情報を取得できません。

© Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top