Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Localization of the coefficient theorem
Shinji Yamashita
著者情報
ジャーナル フリー

1999 年 22 巻 3 号 p. 384-401

詳細
抄録
Let f be holomorphic and univalent in D={|z|<1} and set K(z)=z/(1−z)2. We prove |f(n)(z)/f'(z)|K(n)(|z|)/K'(|z|) at each zD and for each n≥2. This inequality at z=0 is just the coefficient theorem of de Branges, the very solution of the Bieberbach conjecture. The equality condition is given in detail. In the specified case where f(D) is convex we have again a similar and sharp result. We also consider |f(n)(z)/f'(z)| for f univalent in a hyperbolic domain Ω with the Poincaré density PΩ(z) and the radius of univalency ρΩ(z) at z∈Ω. We obtain the estimate (ρΩ(z)/PΩ(z))n−1|f(n)(z)/f'(z)|n!4n−1 at z∈Ω for n≥2, together with the detailed equality condition on f, Ω, and z.
著者関連情報

この記事は最新の被引用情報を取得できません。

© Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top