Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Taylor expansion of implicit functions defined by linear equations of variables
Kazuto Asai
著者情報
ジャーナル フリー

2001 年 24 巻 1 号 p. 31-35

詳細
抄録
Let F be a monoid of countably many functions holomorphic at y0, and (Xf)fF be a set of independent variables. We set F*=F−{1}, x*=(xf)fF*. Let (F1, F2, ...) be an increasing sequence of finite subsets of F such that ∪i≥1 Fi=F. For i≥1, let Ai, denote the ring of all functions of (xf)fFi, holomorphic at (x1, (xf)fFi−{1})=(x10, 0). Define A=proj lim Ai. Consider the implicit function yA defined by g(y)=ΣfFxff(y) (y(x10, 0)=y0). We have the Taylor expansion of y at x*=0:
y=g−1(x1)+Σα(\frac{d|α|−1}{dX1|α|−1} \frac{ΠfF*fα(f)(g−1(x1))}{g'(g−1(x1))}) \frac{x*α}{α!},
where the sum runs over all maps α : F*→{0, 1, 2, ...} such that |α| :=ΣfF*α(f) are positive finite.
著者関連情報

この記事は最新の被引用情報を取得できません。

© Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top