Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
A local limit theorem for random walk defined on a finite Markov chain with absorbing barriers
Toshiyuki TakenamiMichio Shimura
著者情報
ジャーナル フリー

2002 年 25 巻 3 号 p. 301-308

詳細
抄録
Let {ξn}n≥0 denote an ergodic Markov chain with a finite state space Ξ={1, 2, ..., s}. For each j, kΞ, let {Ynjk}n≥1 be a sequence of i.i.d. {−1, 1}-valued random variables which are independent of {ξn}. We define the process {Sn}n≥ 0 by S0=0 and Sn=Sn−1+Ynξn−1ξn for n≥ 1. Let a be a positive integer. We denote by Tx the first exit time of the process from the interval [−x, ax] for each x=0, 1, ..., a. We give an asymptotic behaviour of the transition functions Pjk(n)(x, y)=P{x+Sn=y; Tx>n; ξn=k|ξ0=j} as n→∞ for each x, y∈[0, a] and all j, kΞ.
著者関連情報

この記事は最新の被引用情報を取得できません。

© Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top