Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
A new characterization of submanifolds with parallel mean curvature vector in Sn+p
Abdênago Alves de BarrosAldir Chaves Brasil Jr.Luis Amancio Machado de Soursa Jr.
著者情報
ジャーナル フリー

2004 年 27 巻 1 号 p. 45-56

詳細
抄録
In this work we will consider compact submanifold Mn immersed in the Euclidean sphere Sn+p with parallel mean curvature vector and we introduce a Schrödinger operator L=−Δ+V, where Δ stands for the Laplacian whereas V is some potential on Mn which depends on n, p and h that are respectively, the dimension, codimension and mean curvature vector of Mn. We will present a gap estimate for the first eigenvalue μ1 of L, by showing that either μ1=0 or μ1≤−n(1+H2). As a consequence we obtain new characterizations of spheres, Clifford tori and Veronese surfaces that extend a work due to Wu [W] for minimal submanifolds.
著者関連情報

この記事は最新の被引用情報を取得できません。

© Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top