Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Extremal disks and extremal surfaces of genus three
Gou Nakamura
著者情報
ジャーナル フリー

2005 年 28 巻 1 号 p. 111-130

詳細
抄録
A compact Riemann surface of genus g≥2 is said to be extremal if it admits an extremal disk, a disk of the maximal radius determined by g. If g=2 or g≥4, it is known that how many extremal disks an extremal surface of genus g can admit. In the present paper we deal with the case of g=3. Considering the side-pairing patterns of the fundamental polygons, we show that extremal surfaces of genus 3 admit at most two extremal disks and that 16 surfaces admit exactly two. Also we describe the group of automorphisms and hyperelliptic surfaces.
著者関連情報

この記事は最新の被引用情報を取得できません。

© Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top