Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
The 3G inequality for a uniformly John domain
Hiroaki AikawaTorbjörn Lundh
著者情報
ジャーナル フリー

2005 年 28 巻 2 号 p. 209-219

詳細
抄録
Let G be the Green function for a domain DRd with d≥3. The Martin boundary of D and the 3G inequality:
\frac{G(x, y)G(y, z)}{G(x, z)}≤A(|xy|2−d+|yz|2−d)   for x, y, zD
are studied. We give the 3G inequality for a bounded uniformly John domain D, although the Martin boundary of D need not coincide with the Euclidean boundary. On the other hand, we construct a bounded domain such that the Martin boundary coincides with the Euclidean boundary and yet the 3G inequality does not hold.
著者関連情報

この記事は最新の被引用情報を取得できません。

© Department of Mathematics, Tokyo Institute of Technology
次の記事
feedback
Top