Kyushu Journal of Mathematics
Online ISSN : 1883-2032
Print ISSN : 1340-6116
ISSN-L : 1340-6116
AUTOMORPHIC FORMS ON THE COMPLEX AND REAL BALLS DERIVED FROM THETA CONSTANTS
Keiji MATSUMOTO
著者情報
ジャーナル フリー

2004 年 58 巻 1 号 p. 71-104

詳細
抄録
Through the modular embedding of the complex n-dimensional ball BnC into the Siegel upper half-space Sn+1 of degree n + 1 with respect to the Eisenstein integers Z[ω], we pull back the theta constants on Sn+1. We find a condition on the characteristics of the theta constants so that the pullbacks are non-zero automorphic forms on BnC with respect to the congruence subgroup Γ(1−ω). These automorphic forms are real valued on the real ball naturally embedded in the complex ball.
著者関連情報
© 2004 by Faculty of Mathematics, Kyushu University
前の記事 次の記事
feedback
Top