MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Structures and Local Electronic States of Dislocation Loop in 4H-SiC via a Linear-Scaling Tight-Binding Study
Fusanori HamasakiKenji Tsuruta
著者情報
ジャーナル フリー

2011 年 52 巻 4 号 p. 672-676

詳細
抄録
The atomic- and electronic-level structures of a dislocation loop and a stacking fault in 4H-SiC crystal are investigated by using large-scale tight-binding (TB) molecular-dynamics simulation. We employ a linear-scaling TB method implemented on a parallel computer in order to accelerate the 9,600-atoms calculation which is required for such a nanoscale simulation. We find that the initial configuration that involves unstable C-C networks around the dislocation loop is relaxed to a structure having six-membered rings, and that the distribution of electron populations is inhomogeneous on the loop. The local electronic density of states shows two peaks in the bulk band gap, where one of these peaks may correspond to the defect state observed in EBIC and CL experiments.
著者関連情報
© 2011 The Japan Institute of Metals and Materials
前の記事 次の記事
feedback
Top