MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Microstructure and High Temperature Charge-Discharge Characteristics of 3D Additive Manufacturing Produced Mg-Ni Anode
Yen-Ting ChenFei-Yi HungTruan-Sheng LuiHuey-Pyng Tan
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2018 Volume 59 Issue 4 Pages 685-689

Details
Abstract

This study applied a 3D additive manufacturing technique to produce a stable and high performance Mg-Ni alloy anode for lithium ion batteries. This 3D process used Mg-Ni powders to printed two layers on copper foil to obtain the Mg-Ni anodes directly, the 3D printed anodes have not need the traditional stir-slurry, coating and baking processes, and process the performances of high efficiency and low coat. Experiment results show that Mg2Ni, MgNi2 and Mg2Cu intermetallic compounds (IMC) are benefit for 3D printed anode, the anode can slowly form a dense and thick SEI layer at 55°C high temperature charge-discharge; therefore, a better capacity than at 25°C can be achieved. The 85°C charge-discharge environment makes the volume expansion effect serious, which results in capacity decay slightly. The presented high temperature charge-discharge capacities are higher than that of the commercial lithium battery, demonstrate that 3D additive manufacturing can fabricate the novel alloy electrodes simply and quickly, and that 3D Mg-Ni anodes are very suitable for today’s high-end electronic products.

Content from these authors
© 2018 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top