Being aimed to internationally provide scientific and technological information
in the fields of materials and processing from Japan as the Asian core,
“Materials Transactions”
is collaboratively published with the agreement of the following Institutes.
NB: “Materials Transactions” succeeded to “Materials Transactions, JIM”
published by The Japan Institute of Metals and Materials.
The kinetics of phase transformation in the Fe–C system during cooling are of great importance for controlling its microstructure and mechanical properties. However, real-time observation of the phase transformation has been a challenging task because of experimental difficulties. Here, we developed an analytical technique for time-resolved observation of the phase transformation of an Fe–C system during cooling via X-ray absorption spectroscopy with a time resolution of 200 µs. The technique was applied to model specimens: Fe, Fe–0.044C, and Fe–1.24C. The incubation time before phase transformation and the multiple steps of phase transformation from γ-Fe to α-Fe (+ Fe3C) could be clearly observed by the proposed technique, and the behaviors were significantly different among the specimens. Through the developed technique, change in atomic structures at a short-range scale was detected, which is complementary to X-ray diffraction that detects atomic structures only in long-range order. The developed technique can detect structure changes at early stage of phase transformations, where structures changes often begin at a short-range scale, and provide inevitable information on the kinetics.
Tubasa Suzuki, Masaki Tanaka, Tatsuya Morikawa, Jun Fujise, Toshiaki Ono
Silicon single crystals were deformed in tensile tests along the [134] direction between 1173 K and 1373 K. The yield point phenomenon was observed in the specimens deformed below 1273 K, while a continuous yield was observed in the specimens deformed above 1323 K. The values of work-hardening rate in stage II were the same as those reported in other single crystals. Orientation maps of the specimen obtained by using electron backscattered electron diffraction method indicated that stage II starts before the Schmid factor of the secondary slip system became larger than that of the primary slip system. Because of the constraint due to the gripping of the test piece, kink bands are formed during stage I before the onset of stage II, and then the stress state becomes non-uniaxial. This suggests that the formation of kink bands triggers the activation of the secondary, i.e., conjugate slip system to increase the resolved shear stress on the conjugate slip systems.
Measurements of the open circuit potential of AA1050 were performed in 10 mM CrO3, and the Al-matrix around the intermetallic particles was found to dissolve locally. Pre-immersion in 1 M NaOH promoted the dissolution of the Al-matrix around intermetallic particles, resulting in the improvement of pitting corrosion resistance in NaCl solutions. The pitting corrosion resistance provided by molybdate treatment is effectively improved by pre-immersion in NaOH. The maximum pit depth of the specimen treated in MoO3–HNO3 solution after pre-immersion in 1 M NaOH was small compared to the chromate-treated specimen. It was determined that immersion in an acidic solution containing an inhibitor after pre-immersion in NaOH is an effective method to improve the pitting corrosion resistance of aluminum alloys.
The complex atomic structure of a high-order approximant to face-centered icosahedral quasicrystal in Al–Pd–TM (TM = transition metal) systems can be deconvoluted into two kinds of atomic clusters pinned at the vertices of a tiling composed of four basic polyhedra, called the canonical cells. As a result, thousands of atoms per unit cell can be registered in fifteen orbits associated with vertices, edges, faces, and cells of the relevant canonical-cell tiling. This geometrical framework facilitates a rational guess of an atomic jungle in an unknown approximant structure, could an underlying tiling be postulated. A novel approximant phase in the Al–Pd–(Mo–Fe) system is discussed within the present framework.
Recent discovery of various magnetism in Tsai-type quasicrystal approximants, in whose alloys rare-earth ions located on icosahedral vertices are coupled with each other via the Ruderman-Kittel-Kasuya-Yosida interaction, indicates an avenue to find novel magnetism originating from the icosahedral symmetry. Here we investigate classical and quantum magnetic states on an icosahedral cluster within the Heisenberg interactions of all bonds. Simulated annealing and numerical diagonalization are performed to obtain the classical and quantum ground states. We obtain qualitative correspondence of classical and quantum phase diagrams. Our study gives a good starting point to understand the various magnetism in not only quasicrystal approximants but also quasicrystals.
Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element
Released on J-STAGE: January 14, 2006 |
Volume 46
Issue 12
Pages 2817-2829
Akira Takeuchi, Akihisa Inoue
Views: 348
2
SPD Deformation of Pearlitic, Bainitic and Martensitic Steels
Released on J-STAGE: April 28, 2023 |
Article ID MT-MF2022027
Marlene W. Kapp, Anton Hohenwarter, Andrea Bachmaier, Timo Müller, Reinhard Pippan
Views: 165
2
Thermodynamic Analysis of the Phase Equilibria of the Nb–Ni–Ti System
Released on J-STAGE: January 14, 2006 |
Volume 46
Issue 12
Pages 2920-2930