MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Advanced Functional Oxides
Synergistic Effect between Fe4+ and Co4+ on Oxygen Evolution Reaction Catalysis for CaFe1−xCoxO3
Ikuya YamadaAtsushi TanakaSeiji OdaYuichi OkazakiFumito TodaYuta KatoYuta KizawaMasaya OshitaManami GotoAmane MorimuraAsuka OchiKaoru TodaWencong WangHajime YamamotoHidekazu IkenoShunsuke Yagi
著者情報
ジャーナル フリー HTML

2023 年 64 巻 9 号 p. 2097-2104

詳細
抄録

Chemical substitution is an effective way to improve electrocatalytic properties in transition metal oxides. We investigate the synergistic effect between Fe4+ and Co4+ ions on the catalytic activity for oxygen evolution reaction (OER) in the Fe–Co-mixed perovskite oxide CaFe1−xCoxO3. The OER activity of CaFe1−xCoxO3 is substantially increased by small amounts of Co (Fe) doping into CaFeO3 (CaCoO3), leading to the superiority compared to the pure Fe and Co perovskite oxides. The x dependences of the OER overpotential and specific activity for CaFe1−xCoxO3 (0.05 ≦ x ≦ 0.95) are expressed by constant offset from the weighted average between CaFeO3 and CaCoO3, which can be interpreted to be the synergistic effect between Fe4+ and Co4+ ions on OER activity. The absence of the optimum x for the highest activity for CaFe1−xCoxO3 contrasts with the volcano-like plots reported in various mixed-metal oxides. First-principle calculations using the special quasirandom structure models on CaFe1−xCoxO3 (x = 0.03–0.5) demonstrate that about half the amount of Fe4+ is electronically activated to possess smaller charge-transfer energies, corroborating the enhancement of catalytic activity in CaFe1−xCoxO3. These findings provide new insight into the synergistic effects in complex transition metal oxide catalysts.

Fullsize Image
著者関連情報
© 2023 The Japan Institute of Metals and Materials
前の記事 次の記事
feedback
Top