MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Effect of Nb and Ti Addition on Microstructure and Hardness of Dual Two-Phase Intermetallic Alloys Based on Ni3Al-Ni3V Pseudo-Binary Alloy System
K. KawaharaT. MoronagaY. KanenoA. KakitsujiT. Takasugi
著者情報
ジャーナル 認証あり 早期公開

論文ID: M2010097

この記事には本公開記事があります。
詳細
抄録
The microstructures and hardness property of dual two-phase intermetallic alloys that are composed of various kind of volume fractions of geometrically closed packed (GCP) Ni3Al(L12) and Ni3V(D022) phases was studied. Higher volume fraction of primary Ni3Al precipitates was observed in the Ti and Nb added alloys when keeping Al content the same. Also, the microstructures in the eutectoid (channel) region consisting of Ni3Al+Ni3V were sensitive to alloying addition. The hardness of dual two-phase intermetallic alloys was basically explained by mixture rule in hardness between primary Ni3Al precipitates and eutectoid region. Nb and Ti addition raised hardness of dual two-phase intermetallic alloys by solid solution hardening in the constituent phases. This hardening was more significant in Nb addition than in Ti addition. In addition to hardness owing to the mixture rule, additional hardening arising from interfacial area between primary Ni3Al precipitates and eutectoid region was found. With increasing Ni3Al/channel (eutectoid) interfacial area, the additional hardening increased. As temperature increases, the additional hardening monotonously decreased for the base and Nb added alloys but little decreased for the Ti added alloys.
著者関連情報
© 2010 The Japan Institute of Metals and Materials
feedback
Top