MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Effect of Solidification Conditions on the Deformation Behavior of Pure Copper Castings
Ikuzo GotoSetsuo AsoKen-ichi OhguchiKengo KurosawaHiroyuki SuzukiHiroyuki HayashiJun-ichi Shionoya
著者情報
ジャーナル フリー 早期公開

論文ID: MG201801

この記事には本公開記事があります。
詳細
抄録

The effect of solidification conditions on the tensile deformation behavior of pure copper castings for electrical parts was investigated. Two main types of tensile deformation properties were distinguished on the basis of the difference in uniform elongation. For the castings fabricated under a superheat of 100°C or 150°C, larger and smaller uniform elongation types corresponded to the absence and presence, respectively, of the Cu–Cu2O eutectic phase in the microstructure. Meanwhile, for the castings fabricated under a superheat of 50°C, greater uniform elongation was sometimes obtained when the eutectic phase was present. In addition, irrespective of the presence or absence of the eutectic phase, greater uniform elongation was always obtained when chills were used. Cross-sectional observations showed the existence of considerable nonspherical porosity when the eutectic phase was present; the porosity was reduced when the pouring was conducted under the superheat of 50°C and when the chills were used because of lower hydrogen content in the melt and supersaturation of the hydrogen by rapid cooling, respectively. These results suggest that not only the presence of the eutectic phase but also the inferior casting soundness due to the existence of the porosity is a dominant factor responsible for the decrease in the uniform elongation. The findings presented here indicate that a decrease in the hydrogen content in the melt and/or the rapid cooling during solidification are effective measures to stably achieve practically sufficient deformation properties along with superior casting soundness.

著者関連情報
© 2018 The Japan Institute of Metals and Materials
feedback
Top