MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Low-Temperature Oxidation-Sintering Behaviors of Cu Fine Particles
Nobuaki TakeuchiDaisuke AndoJunichi KoikeYuji Sutou
著者情報
ジャーナル フリー 早期公開

論文ID: MT-M2022219

この記事には本公開記事があります。
詳細
抄録

Cu fine-particle paste is a promising material to form a low-cost interconnect for flexible electronics devices. It has been reported that Cu particles can be sintered at low temperature (well below the half of the melting point) through two-step heat treatment processes of oxidation and reduction. However, the mechanism of the low temperature sintering is not clear yet. In this study, we investigated the oxidation sintering process of Cu fine particles by thermal gravimetric analysis (TGA) in the temperature range of 200°C∼300°C, X-ray diffraction (XRD), and microstructural observation. It was found from TGA that the oxidation process was initially rate-controlled by surface reaction and then by Cu diffusion at grain boundaries of Cu2O. Transmission electron microscopy observation revealed the formation of a core (Cu)-shell (Cu2O) structure during the oxidation process. The adjacent Cu2O shells were bonded to each other resulting in a cross-linked structure. The subsequent reduction process led to the formation of a porous structure by oxygen removal, but the cross-linked structure was maintained, which would make the low-temperature sintered Cu body as robust as solidified solder and sintered Ag paste.

 

This paper was Originally Published in Japanese in J. Japan Inst. Met. Mater. 86(2022)224-231.

著者関連情報
© 2023 The Japan Institute of Metals and Materials
feedback
Top