論文ID: MT-MC2024013
This study investigates the microstructural evolution, mechanical properties, and biological response of the Ti-34Nb-2Ta-3Zr-0.5O (mass%) alloy processed by High-Pressure Torsion (HPT) at ambient temperature, focusing on its suitability for biomedical applications. The HPT process significantly increased the fraction of high-angle grain boundaries, particularly in the range of 50–60°. Grain refinement was observed after both 2 and 4 turns of HPT; ultra-fine grain fraction increased with an increase in the number of turns of HPT. No phase transformations occurred during deformation. The bulk texture indicates the formation of a fibrous texture post-HPT processing. The hardness of the samples increased up to 348 HV after 4 turns compared to the alloy not subjected to HPT (280 HV). The HPT samples demonstrated higher Ecorr and lower Icorr values, indicating improved corrosion resistance in phosphate-buffered saline. In vitro cell studies revealed that HPT did significantly affect the viability and growth of osteoblasts on the TNTZ alloy. Taken together, these results establish HPT as a promising processing route for enhancing the biomedical performance of TNTZ toward developing high-performance bone implants.