J-STAGE Home  >  Publications - Top  > Bibliographic Information

Magnetic Resonance in Medical Sciences
Vol. 15 (2016) No. 1 p. 41-48

Language:

http://doi.org/10.2463/mrms.2014-0139

Major Papers

Purpose: To shorten acquisition of diffusion kurtosis imaging (DKI) in 1.5-tesla magnetic resonance (MR) imaging, we investigated the effects of the number of b-values, diffusion direction, and number of signal averages (NSA) on the accuracy of DKI metrics.
Methods: We obtained 2 image datasets with 30 gradient directions, 6 b-values up to 2500 s/mm2, and 2 signal averages from 5 healthy volunteers and generated DKI metrics, i.e., mean, axial, and radial kurtosis (MK, K, and K) maps, from various combinations of the datasets. These maps were estimated by using the intraclass correlation coefficient (ICC) with those from the full datasets.
Results: The MK and K maps generated from the datasets including only the b-value of 2500 s/mm2 showed excellent agreement (ICC, 0.96 to 0.99). Under the same acquisition time and diffusion directions, agreement was better of MK, K, and K maps obtained with 3 b-values (0, 1000, and 2500 s/mm2) and 4 signal averages than maps obtained with any other combination of numbers of b-value and varied NSA. Good agreement (ICC > 0.6) required at least 20 diffusion directions in all the metrics.
Conclusion: MK and K maps with ICC greater than 0.95 can be obtained at 1.5T within 10 min (b-value = 0, 1000, and 2500 s/mm2; 20 diffusion directions; 4 signal averages; slice thickness, 6 mm with no interslice gap; number of slices, 12).

Copyright © 2016 by Japanese Society for Magnetic Resonance in Medicine

Article Tools

Share this Article