Magnetic Resonance in Medical Sciences
Online ISSN : 1880-2206
Print ISSN : 1347-3182
ISSN-L : 1347-3182
Major Papers
Diffusion-weighted MR Imaging for the Assessment of Renal Function: Analysis Using Statistical Models Based on Truncated Gaussian and Gamma Distributions
Kentaro YAMADAHiroshi SHINMOTOKoichi OSHIOSeigo ITOHiroo KUMAGAITatsumi KAJI
Author information
JOURNAL OPEN ACCESS

2016 Volume 15 Issue 2 Pages 237-245

Details
Abstract
Purpose: To determine the appropriateness of statistical models using the truncated Gaussian distribution and gamma distribution for diffusion signal decay, and to assess the correlation between the parameters obtained from the statistical models and estimated glomerular filtration rate (eGFR).
Methods: Twenty-nine patients with chronic kidney disease and 21 healthy volunteers were included and classified in four groups according to eGFR (ml/min/1.73 m2): group 1 (90 ≤ eGFR, n = 10), group 2 (eGFR 60–90, n = 15), group 3 (eGFR 30–60, n = 17), and group 4 (eGFR < 30, n = 8). Diffusion-weighted imaging using five b-values (0, 500, 1000, 1500, and 2000 s/mm2) was performed. Truncated Gaussian and gamma models were compared for goodness of fit. Area fractions for the diffusion coefficient D < 1.0 × 10−3 mm2/s (Frac < 1.0) and D > 3.0 × 10−3 mm2/s (Frac > 3.0) obtained from the statistical model were compared among four groups. Correlation between proposed parameters and conventional apparent diffusion coefficient (ADC) with eGFR was calculated.
Results: There was no significant difference in goodness of fit between the truncated Gaussian and gamma models. Frac < 1.0 and Frac > 3.0 showed good correlation with eGFR, as did ADC. Comparison between groups 1 and 2 showed that only Frac < 1.0 in both distribution models had significant differences.
Conclusion: Statistical models yield robust interpretation of diffusion magnetic resonance (MR) signals with relevance to histological changes in the kidney. The parameters of the statistical models, particularly Frac < 1.0, strongly correlated with eGFR.
Content from these authors
© 2016 by Japanese Society for Magnetic Resonance in Medicine

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top