J-STAGE Home  >  Publications - Top  > Bibliographic Information

Magnetic Resonance in Medical Sciences
Vol. 16 (2017) No. 1 p. 61-65

Language:

http://doi.org/10.2463/mrms.mp.2016-0039

Major Papers

Purpose: In textbooks, the perivascular space (PVS) is described as non-enhancing after the intravenous administration of gadolinium-based contrast agent (IV-GBCA). We noticed that the PVS sometimes has high signal intensity (SI) on heavily T2-weighted 3D-FLAIR (hT2-FL) images obtained 4 h after IV-GBCA. The purpose of this study was to retrospectively evaluate the contrast enhancement of the PVS.

Materials and Methods: In 8 healthy subjects and 19 patients with suspected endolymphatic hydrops, magnetic resonance cisternography (MRC) and hT2-FL images were obtained before and 4 h after a single dose of IV-GBCA. No subjects had renal insufficiency. On axial MRC at the level of the anterior commissure (AC)-posterior commissure (PC) line, 1 cm circular regions of interest (ROIs) were drawn centering on the PVS in the bilateral basal ganglia and thalami. Three-millimeter diameter ROIs were set in the cerebrospinal fluid (CSF) of the bilateral ambient cistern. The ROIs on MRC were copied onto the hT2-FL images and the SI was measured. The SI ratio (SIR) was defined as SIRPVS = SI of PVS/SI of the thalami, and SIRCSF = SI of CSF/SI of the thalami. The average of the bilateral values was used for the calculation. The SIRCSF, SIRPVS, and SI of the thalami were compared between before and 4 h after IV-GBCA.

Results: The SIR was increased significantly from 1.02 ± 0.37 to 2.65 ± 0.82 in the CSF (P < 0.01) and from 1.20 ± 0.35 to 2.13 ± 1.23 in the PVS at 4 h after IV-GBCA (P < 0.01). The SI of the thalami showed no significant difference.

Conclusion: The enhancement of the PVS at 4 h after IV-GBCA was confirmed even in subjects without renal insufficiency. It is possible that the GBCA in the blood vessels might have permeated into the cerebrospinal fluid (CSF) space and the PVS. This might be a first step in the imaging evaluation of the glymphatic system (waste clearance system) of the brain.

Copyright © 2017 by Japanese Society for Magnetic Resonance in Medicine

Article Tools

Share this Article