Magnetic Resonance in Medical Sciences
Online ISSN : 1880-2206
Print ISSN : 1347-3182
ISSN-L : 1347-3182
MajorPapers
The Utility of a Convolutional Neural Network for Generating a Myelin Volume Index Map from Rapid Simultaneous Relaxometry Imaging
Yasuhiko TachibanaAkifumi HagiwaraMasaaki HoriJeff KershawMisaki NakazawaTokuhiko OmatsuRiwa KishimotoKazumasa YokoyamaNobutaka HattoriShigeki AokiTatsuya HigashiTakayuki Obata
Author information
JOURNAL OPEN ACCESS
Supplementary material

2020 Volume 19 Issue 4 Pages 324-332

Details
Abstract

Purpose: A current algorithm to obtain a synthetic myelin volume fraction map (SyMVF) from rapid simultaneous relaxometry imaging (RSRI) has a potential problem, that it does not incorporate information from surrounding pixels. The purpose of this study was to develop a method that utilizes a convolutional neural network (CNN) to overcome this problem.

Methods: RSRI and magnetization transfer images from 20 healthy volunteers were included. A CNN was trained to reconstruct RSRI-related metric maps into a myelin volume-related index (generated myelin volume index: GenMVI) map using the MVI map calculated from magnetization transfer images (MTMVI) as reference. The SyMVF and GenMVI maps were statistically compared by testing how well they correlated with the MTMVI map. The correlations were evaluated based on: (i) averaged values obtained from 164 atlas-based ROIs, and (ii) pixel-based comparison for ROIs defined in four different tissue types (cortical and subcortical gray matter, white matter, and whole brain).

Results: For atlas-based ROIs, the overall correlation with the MTMVI map was higher for the GenMVI map than for the SyMVF map. In the pixel-based comparison, correlation with the MTMVI map was stronger for the GenMVI map than for the SyMVF map, and the difference in the distribution for the volunteers was significant (Wilcoxon sign-rank test, P < 0.001) in all tissue types.

Conclusion: The proposed method is useful, as it can incorporate more specific information about local tissue properties than the existing method. However, clinical validation is necessary.

Content from these authors
© 2019 by Japanese Society for Magnetic Resonance in Medicine

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top