Magnetic Resonance in Medical Sciences
Online ISSN : 1880-2206
Print ISSN : 1347-3182
ISSN-L : 1347-3182
Major Papers
Robustness of a Combined Modified Dixon and PROPELLER Sequence with Two Interleaved Echoes in Clinical Head and Neck MRI
Yutaka ShigenagaDaisuke TakenakaTomohisa HashimotoTakayuki Ishida
Author information
JOURNAL OPEN ACCESS

2021 Volume 20 Issue 1 Pages 76-82

Details
Abstract

Purpose: The combination of modified Dixon (mDixon) and periodically rotated overlapping parallel lines with enhanced reconstruction sequence with two interleaved echoes, which promotes uniform fat-suppression and motion insensitivity, has recently become available for commercial magnetic resonance imaging (MRI) scanners. To compare the robustness of this combination sequence with that of standard Cartesian mDixon sequence for fat-suppressed T2-weighted imaging in clinical head and neck MRI.

Methods: Fifty patients with head and neck tumors were involved this study. All patients underwent MRI using both the combination and standard sequences. Two radiologists independently scored motion artifacts and water–fat separation error using a 4-point scale (1, unacceptable; 4, excellent). Furthermore, comprehensive comparative evaluation was performed using a 5-point scale (1, substantially inferior; 5, substantially superior). Data were statistically analyzed using the Wilcoxon signed-rank test.

Results: In the motion artifact assessment, ratings of 3 or 4 points were assigned to 45% (observer-1, 58.0%; observer-2, 32.0%) and 97% (100%; 94.0%) of images for the standard and combination sequences, respectively (P < 0.001). For the water–fat separation error assessment, ratings of 3 or 4 points were assigned to 100% (100%; 100%) and 85% (84.0%; 86.0%) of images, respectively (P < 0.001). In the comprehensive evaluation, of the 100 cases (observer-1, 50; observer-2, 50), 96 were rated at four or five points. In cases with slight or no motion artifacts and water–fat separation errors, the combination sequence was superior to the standard sequence in term of noise and sharpness, and equal in terms of contrast.

Conclusion: Although water–fat separation errors increased significantly in the combination sequence, most of these were acceptable. The significantly decreased motion artifacts in the combination sequence significantly improved image quality overall.

Content from these authors
© 2020 by Japanese Society for Magnetic Resonance in Medicine

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top