Magnetic Resonance in Medical Sciences
Online ISSN : 1880-2206
Print ISSN : 1347-3182
ISSN-L : 1347-3182
Major Papers
Acute Physiological Response of Lumbar Intervertebral Discs to High-load Deadlift Exercise
Osamu YanagisawaTomoki OshikawaNaoto MatsunagaGen AdachiKoji Kaneoka
Author information
JOURNAL OPEN ACCESS

2021 Volume 20 Issue 3 Pages 290-294

Details
Abstract

Purpose: We aimed to evaluate the acute physiological effects of high-load deadlift exercise on the lumbar intervertebral discs using MR diffusion-weighted imaging (DWI).

Methods: Fifteen volunteers (11 men and 4 women; 23.2 ± 3.3 years) without lumbar intervertebral disc degeneration performed deadlift exercise (70% of 1 repetition maximum, 6 repetitions, 5 sets, 90 s rest between sets) using a Smith machine. Sagittal MR diffusion-weighted images of the lumbar intervertebral discs were obtained using a 1.5-Tesla MR system with a spine coil before and immediately after the exercise. We calculated apparent diffusion coefficient (ADC; an index of water movement) of the nucleus pulposus from diffusion weighted images at all lumbar intervertebral discs (L1/2 through L5/S1).

Results: All lumbar intervertebral discs showed significantly decreased ADC values immediately after deadlift exercise (L1/2, −2.8%; L2/3, −2.1%; L3/4, −2.8%; L4/5, −4.9%; L5/S1, −6.2%; P < 0.01). In addition, the rate of ADC decrease of the L5/S1 disc was significantly greater than those of the L1/2 (P = 0.017), L2/3 (P < 0.01), and L3/4 (P = 0.02) discs.

Conclusion: The movement of water molecules within the lumbar intervertebral discs is suppressed by high-load deadlift exercise, which would be attributed to mechanical stress on the lumbar intervertebral discs during deadlift exercise. In particular, the L5/S1 disc is subjected to greater mechanical stress than the other lumbar intervertebral discs.

Content from these authors
© 2020 by Japanese Society for Magnetic Resonance in Medicine

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top