Magnetic Resonance in Medical Sciences
Online ISSN : 1880-2206
Print ISSN : 1347-3182
ISSN-L : 1347-3182
REVIEWS
Deep Learning and Its Application to Function Approximation for MR in Medicine: An Overview
Hidenori Takeshima
Author information
JOURNAL OPEN ACCESS

2022 Volume 21 Issue 4 Pages 553-568

Details
Abstract

This article presents an overview of deep learning (DL) and its applications to function approximation for MR in medicine. The aim of this article is to help readers develop various applications of DL. DL has made a large impact on the literature of many medical sciences, including MR. However, its technical details are not easily understandable for non-experts of machine learning (ML).

The first part of this article presents an overview of DL and its related technologies, such as artificial intelligence (AI) and ML. AI is explained as a function that can receive many inputs and produce many outputs. ML is a process of fitting the function to training data. DL is a kind of ML, which uses a composite of many functions to approximate the function of interest. This composite function is called a deep neural network (DNN), and the functions composited into a DNN are called layers. This first part also covers the underlying technologies required for DL, such as loss functions, optimization, initialization, linear layers, non-linearities, normalization, recurrent neural networks, regularization, data augmentation, residual connections, autoencoders, generative adversarial networks, model and data sizes, and complex-valued neural networks.

The second part of this article presents an overview of the applications of DL in MR and explains how functions represented as DNNs are applied to various applications, such as RF pulse, pulse sequence, reconstruction, motion correction, spectroscopy, parameter mapping, image synthesis, and segmentation.

Content from these authors
© 2021 by Japanese Society for Magnetic Resonance in Medicine

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top