Magnetic Resonance in Medical Sciences
Online ISSN : 1880-2206
Print ISSN : 1347-3182
ISSN-L : 1347-3182

This article has now been updated. Please use the final version.

Assessment of Coronary Flow Velocity Reserve in the Left Main Trunk Using Phase-contrast MR Imaging at 3T: Comparison with 15O-labeled Water Positron Emission Tomography
Yasuka KikuchiMasanao NayaNoriko Oyama-ManabeOsamu ManabeHiroyuki SugimoriKohsuke KudoFumi KatoTadao AikawaHiroyuki TsutsuiNagara TamakiHiroki Shirato
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: mp.2018-0003

Details
Abstract

Purpose: The aim of this study was to verify coronary flow velocity reserve (CFVR) on the left main trunk (LMT) in comparison with myocardial flow reserve (MFR) by 15O-labeled water positron emission tomography (PET) (MFR-PET) in both the healthy adults and the patients with coronary artery disease (CAD), and to evaluate the feasibility of CFVR to detect CAD.

Methods: Eighteen healthy adults and 13 patients with CAD were evaluated. CFVR in LMT was estimated by 3T magnetic resonance imaging (MRI) with phase contrast technique. MFR-PET in the LMT territory including anterior descending artery and circumflex artery was calculated as the ratio of myocardial blood flow (MBF)-PET at stress to MBF-PET at rest.

Results: There was a significant positive relationship between CFVR and MFR-PET (R = 0.45, P < 0.0001). Inter-observer calculations of CFVR showed good correlation (R2 = 0.93, P < 0.0001). The CFVR in patients with CAD was significantly lower than that in healthy adults (1.90 ± 0.61 vs. 2.77 ± 1.03, respectively, P = 0.01), which were similar to the results of MFR-PET (2.23 ± 0.84 vs. 3.96 ± 1.04, respectively, P < 0.0001). For the detection of patients with CAD, the area under the curve was 0.78 (P = 0.01). The sensitivity was 0.77 and specificity was 0.72 when a cut-off of 2.15 was used.

Conclusion: CFVR by 3T was validated with MFR-PET. CFVR could detect the patients with CAD. This method is a simple and reliable index without radiation or contrast material.

Content from these authors
© 2018 by Japanese Society for Magnetic Resonance in Medicine

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top