Magnetic Resonance in Medical Sciences
Online ISSN : 1880-2206
Print ISSN : 1347-3182
ISSN-L : 1347-3182

This article has now been updated. Please use the final version.

Reconstruction of Compressed-sensing MR Imaging Using Deep Residual Learning in the Image Domain
Shohei OuchiSatoshi Ito
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: mp.2019-0139

Details
Abstract

Purpose: A deep residual learning convolutional neural network (DRL-CNN) was applied to improve image quality and speed up the reconstruction of compressed sensing magnetic resonance imaging. The reconstruction performances of the proposed method was compared with iterative reconstruction methods.

Methods: The proposed method adopted a DRL-CNN to learn the residual component between the input and output images (i.e., aliasing artifacts) for image reconstruction. The CNN-based reconstruction was compared with iterative reconstruction methods. To clarify the reconstruction performance of the proposed method, reconstruction experiments using 1D-, 2D-random under-sampling and sampling patterns that mix random and non-random under-sampling were executed. The peak-signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) were examined for various numbers of training images, sampling rates, and numbers of training epochs.

Results: The experimental results demonstrated that reconstruction time is drastically reduced to 0.022 s per image compared with that for conventional iterative reconstruction. The PSNR and SSIM were improved as the coherence of the sampling pattern increases. These results indicate that a deep CNN can learn coherent artifacts and is effective especially for cases where the randomness of k-space sampling is rather low. Simulation studies showed that variable density non-random under-sampling was a promising sampling pattern in 1D-random under-sampling of 2D image acquisition.

Conclusion: A DRL-CNN can recognize and predict aliasing artifacts with low incoherence. It was demonstrated that reconstruction time is significantly reduced and the improvement in the PSNR and SSIM is higher in 1D-random under-sampling than in 2D. The requirement of incoherence for aliasing artifacts is different from that for iterative reconstruction.

Content from these authors
© 2020 by Japanese Society for Magnetic Resonance in Medicine

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top