Magnetic Resonance in Medical Sciences
Online ISSN : 1880-2206
Print ISSN : 1347-3182
ISSN-L : 1347-3182

This article has now been updated. Please use the final version.

Combined Use of Texture Features and Morphological Classification Based on Dynamic Contrast-enhanced MR Imaging: Differentiating Benign and Malignant Breast Masses with High Negative Predictive Value
Shigeharu OhyuMitsuhiro TozakiMichiro SasakiHisae ChibaQilin XiaoYasuko FujisawaYoshiaki Sagara
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: mp.2020-0160

Details
Abstract

Purpose: We evaluated the diagnostic performance of the texture features of dynamic contrast-enhanced (DCE) MRI for breast cancer diagnosis in which the discriminator was optimized, so that the specificity was maximized via the restriction of the negative predictive value (NPV) to greater than 98%.

Methods: Histologically proven benign and malignant mass lesions of DCE MRI were enrolled retrospectively. Training and testing sets consist of 166 masses (49 benign, 117 malignant) and 50 masses (15 benign, 35 malignant), respectively. Lesions were classified via MRI review by a radiologist into 4 shape types: smooth (S-type, 34 masses in training set and 8 masses in testing set), irregular without rim-enhancement (I-type, 60 in training and 14 in testing), irregular with rim-enhancement (R-type, 56 in training and 22 in testing), and spicula (16 in training and 6 in testing). Spicula were immediately classified as malignant. For the remaining masses, 298 texture features were calculated using a parametric map of DCE MRI in 3D mass regions. Masses were classified into malignant or benign using two thresholds on a feature pair. On the training set, several feature pairs and their thresholds were selected and optimized for each mass shape type to maximize specificity with the restriction of NPV > 98%. NPV and specificity were computed using the testing set by comparison with histopathologic results and averaged on the selected feature pairs.

Results: In the training set, 27, 12, and 15 texture feature pairs are selected for S-type, I-type, and R-type masses, respectively, and thresholds are determined. In the testing set, average NPV and specificity using the selected texture features were 99.0% and 45.2%, respectively, compared to the NPV (85.7%) and specificity (40.0%) in visually assessed MRI category-based diagnosis.

Conclusion: We, therefore, suggest that the NPV of our texture-based features method described performs similarly to or greater than the NPV of the MRI category-based diagnosis.

Content from these authors
© 2021 by Japanese Society for Magnetic Resonance in Medicine

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top