Magnetic Resonance in Medical Sciences
Online ISSN : 1880-2206
Print ISSN : 1347-3182
ISSN-L : 1347-3182
Fast Non-contrast MR Angiography Using a Zigzag Centric kykz k-space Trajectory and Exponential Refocusing Flip Angles with Restoration of Longitudinal Magnetization
Vadim MalisDiana VucevicWon C BaeAsako YamamotoYoshimori KassaiJohn LaneAlbert HsiaoKatsumi NakamuraMitsue Miyazaki
Author information
JOURNAL OPEN ACCESS Advance online publication
Supplementary material

Article ID: mp.2023-0158

Details
Abstract

Purpose: Fresh blood imaging (FBI) utilizes physiological blood signal differences between diastole and systole, causing a long acquisition time. The purpose of this study is to develop a fast FBI technique using a centric kykz k-space trajectory (cFBI) and an exponential refocusing flip angle (eFA) scheme with fast longitudinal restoration.

Methods: This study was performed on 8 healthy subjects and 2 patients (peripheral artery disease and vascular disease) with informed consent, using a clinical 3-Tesla MRI scanner. A numeric simulation using extended phase graph (EPG) and phantom studies of eFA were carried out to investigate the restoration of longitudinal signal by lowering refocusing flip angles in later echoes. cFBI was then acquired on healthy subjects at the popliteal artery station to assess the effect of varying high/low flip ratios on the longitudinal restoration effects. In addition, trigger-delays of cFBI were optimized owing to the long acquisition window in zigzag centric kykz k-space trajectory. After optimizations, cFBI images were compared against standard FBI (sFBI) images in terms of scan time, motion artifacts, Nyquist N/2 artifacts, blurring, and overall image quality. We also performed two-way repeated measures analysis of variance.

Results: cFBI with eFA achieved nearly a 50% scan time reduction compared to sFBI. The high/low flip angle of 180/2 degrees with lower refocusing pulses shows fast longitudinal restoration with the highest blood signals, yet also more sensitive to the background signals. Overall, 180/30 degrees images show reasonable blood signal recovery while minimizing the background signal artifacts. After the trigger delay optimization, maximum intensity projection image of cFBI after systole-diastole subtraction demonstrates less motion and N/2 artifacts than that of sFBI.

Conclusion: Together with eFA for fast longitudinal signal restoration, the proposed cFBI technique achieved a 2-fold reduction in scan time and improved image quality without major artifacts.

Content from these authors
© 2024 by Japanese Society for Magnetic Resonance in Medicine

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top